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Abstract— Robotic manipulation policies are commonly ini-
tialized through imitation learning, but their performance is
limited by the scarcity and narrow coverage of expert data.
Reinforcement learning can refine polices to alleviate this
limitation, yet real-robot training is costly and unsafe, while
training in simulators suffers from the sim-to-real gap. Recent
advances in generative models have demonstrated remarkable
capabilities in real-world simulation, with diffusion models in
particular excelling at generation. This raises the question of
how diffusion model-based world models can be combined
to enhance pre-trained policies in robotic manipulation. In
this work, we propose World4RL, a framework that employs
diffusion-based world models as high-fidelity simulators to
refine pre-trained policies entirely in imagined environments for
robotic manipulation. Unlike prior works that primarily employ
world models for planning, our framework enables direct end-
to-end policy optimization. World4RL is designed around two
principles: pre-training a diffusion world model that captures
diverse dynamics on multi-task datasets and refining policies
entirely within a frozen world model to avoid online real-
world interactions. We further design a two-hot action encoding
scheme tailored for robotic manipulation and adopt diffusion
backbones to improve modeling fidelity. Extensive simulation
and real-world experiments demonstrate that World4RL pro-
vides high-fidelity environment modeling and enables consistent
policy refinement, yielding significantly higher success rates
compared to imitation learning and other baselines. More
visualization results are available at https://world4rl.github.io/.

I. INTRODUCTION

Despite recent progress in robotic manipulation, the field
still faces critical challenges for practical deployment. Im-
itation learning is widely used to bootstrap policies from
demonstrations, but its effectiveness is constrained by the
inconsistency [1] and limited diversity [2]–[4] of available
datasets. Although offline reinforcement learning (RL) can
extract better policies from imperfect data, its susceptibility
to overestimation [5] still makes it difficult to work ef-
fectively with limited datasets. Online RL offers a natural
way to refine such pre-trained policies through interaction.
However, real-robot RL, while capable of overcoming dataset
limitations, suffers from high interaction costs and signif-
icant safety risks that hinder large-scale training. Training
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in simulation avoids these risks but inevitably introduces
discrepancies from real-world physics, leading to a persistent
sim-to-real gap [6].

In recent years, generative models have achieved re-
markable progress in the visual domain [7], with diffusion
models [8] demonstrating particularly strong performance in
image [9] and video generation [10], [11]. Such generative
capacity opens new opportunities for modeling complex and
dynamic environments, offering a promising path toward
learnable world simulators that provide realistic yet flexible
environments for RL training in robotic manipulation.

Building on this idea, we introduce World4RL, a frame-
work that systematically integrates diffusion world models
into RL for robotic manipulation. World4RL follows a two-
stage paradigm: we first pre-train a diffusion world model
on multi-task datasets to capture diverse dynamics, and then
refine policies entirely within the frozen model to avoid
costly and unsafe online interactions. Serving as a high-
fidelity simulator, the world model is composed of a diffusion
transition model that predicts future observations conditioned
on current observations and actions, and a reward classifier
that provides sparse success signals, enabling policy opti-
mization without real-world rollouts.

This design of framework contrasts with prior approaches
such as IRASim [12] and NWM [13], which primarily use
generative video models for planning at test time rather than
for direct policy training. A closer line of work, DiWA [14],
also employs world models for policy learning. However, it
relies on recurrent state-space models (RSSM [15]), which
lead to blurry generations and compounding rollout errors.
In contrast, World4RL leverages diffusion backbones that
generate sharper and temporally coherent rollouts, thereby
supporting effective end-to-end reinforcement learning.

To further adapt world models to robotic manipulation,
which involves high-dimensional action spaces and complex
environment interactions compared to navigation [13] and
games [16], we investigate two critical design choices: a two-
hot action encoding [17] scheme that provides an efficient
representation of continuous actions while enabling lossless
reconstruction, thereby serving as a robust bridge between
the RL agent and the world model, and diffusion backbone
architectures that determine the fidelity and consistency of
predictions. These considerations are essential for enabling
diffusion world models to serve not only as visual predictors
but also as reliable simulators for policy training. To this
end, our work makes the following key contributions.

• We propose World4RL, a systematic framework that
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integrates diffusion world model into RL training for
robotic manipulation.

• To improve modeling fidelity and enable more effective
policy refinement, we design a two-hot action encoding
tailored for robotic manipulation and adopt a diffusion
backbone as the world model.

• We validate the effectiveness of World4RL through
extensive experiments, showing that it consistently out-
performs competitive baselines and significantly en-
hances policy refinement, improving success rates by
16% and 25% in simulation and real-robot experiments,
respectively.

II. RELATED WORK

A. World Models

World models have developed rapidly, driven by advances
in generative modeling. Early works such as Ha and Schmid-
huber’s VAE-RNN world model [18] inspired latent dynam-
ics models like DreamerV3 [17] and TD-MPC2 [19], while
more recent Transformer-based approaches (e.g., Genie [20],
Drive-WM [21]) significantly extended the temporal horizon
and expressiveness. With the rise of conditional diffusion
models, world models have achieved high-fidelity video
prediction in diverse domains such as autonomous driving
(GAIA-1 [22], DriveDreamer [23]), navigation (NWM [13]),
and gaming (Diamond [16]). These advances indicate that
generative world models are becoming powerful tools for
simulating complex environments, motivating their applica-
tion to robotic manipulation.

B. World Models in Robotic Manipulation

In robotic manipulation, early research primarily adhered
to the model-based RL paradigm [17], [24], where poli-
cies must interact with the real environment to generate
trajectories for updating the world model. While effective,
these methods do not fully exploit the generative capabili-
ties of modern models and still rely on online interaction,
limiting their applicability to real-world systems. Recent
advancements have shifted toward leveraging world models
for planning, where the model predicts trajectories under
different action sequences and selects the best one. For
example, V-JEPA2 [25] employed self-supervised learning
to train a latent action-conditioned world model for robotic
planning tasks, while IRASim [12] introduced a frame-level
action-conditioning module into a Diffusion Transformers
(DiT) [26], significantly improving action responsiveness.
DiWA [14] employs RSSM [15] as its world model to
optimize the policy, where the VAE-based latent space limits
image generation quality and consequently constrains the
overall performance. In contrast, our World4RL framework
applies a diffusion world model together with a two-hot
action encoding scheme tailored for robotic manipulation,
enabling accurate generation and effective policy refinement
entirely within imagined rollouts.

III. METHOD

A. Overall Framework

Given a policy trained with imitation learning from expert
demonstrations, our goal is to further improve its perfor-
mance in robotic manipulation tasks. To this end, we propose
the World4RL framework, which addresses the limitations
of reinforcement learning (RL), where training in simulators
suffers from the inevitable sim-to-real gap, while training
directly on real robots incurs expensive and risky interac-
tions. The core idea is to leverage a high-fidelity diffusion
world model that enables agents to improve policies entirely
in imagined environments. World4RL consists of three key
components:

• Diffusion Transition Model: Serves as a dynamics ap-
proximator, predicting future observations conditioned
on current observations and actions.

• Reward Classifier: Considering that robotic manipula-
tion tasks typically involve sparse rewards (e.g., suc-
cess/failure signals), we introduce a binary reward clas-
sifier to evaluate imagined rollouts generated by the
world model.

• RL-refined Policy: Initialized with the gaussian policy
to provide a stable starting point, and subsequently
refined within the world model using the Proximal
Policy Optimization (PPO [27]) algorithm.

The overall training pipeline consists of two stages: pre-
training and policy optimization. In the pre-training stage,
the diffusion transition model is trained on task-agnostic
data [28] to generalize across diverse dynamics, the reward
classifier is trained on task-specific data annotated with
binary success labels, and the policy is trained via imitation
learning to provide a stable initialization. In the policy
optimization stage, the pre-trained world model is frozen and
used as a simulator, while the policy is refined with PPO
under sparse rewards through imagined rollouts. This design
improves both sample efficiency and safety, while enabling
consistent gains over the initial gaussian policy. An overview
of the framework is shown in Fig. 1.

B. Pre-training Stage

1) Policy Pre-training: We first pre-train the policy
through imitation learning. This stage provides an imitation-
based initialization from expert demonstrations, ensuring that
the learned policy πξ can already execute reasonable actions.

Formally, given a dataset of expert demonstrations
{(xt, at)}, the policy parameters ξ are optimized by mini-
mizing the mean squared error (MSE) between the predicted
action πξ(xt) and the expert action at:

LBC(ξ) = Et ∥at − πξ(xt)∥2 . (1)

2) Diffusion Transition Model: Diffusion models are a
class of generative models that learn to reverse a gradual
noising process, typically formulated as a stochastic dif-
ferential equation (SDE). By training a neural network to
denoise perturbed samples at different noise levels, the model
can generate realistic data through iterative denoising. To



Fig. 1: Overview of the proposed World4RL framework. Stage 1 (Pre-training) trains the diffusion transition model on
task-agnostic data, optimizes the reward classifier on task-specific success-annotated data, and initializes the policy through
imitation learning with expert demonstrations. Stage 2 (Policy Optimization) freezes the pre-trained world model and employs
reinforcement learning entirely within imagined rollouts.

stabilize training, we follow EDM [29], which introduces a
preconditioned denoising function

Dθ(x
τ ; τ, c) = cτskipx

τ + cτoutFθ(c
τ
inx

τ ; cτnoise, c), (2)

where Fθ is the learnable network, τ is the diffusion
timestep, and c denotes conditioning information.

Building on this framework, we train a diffusion transition
model Dθ that maps a finite history of past T observations
x0t−T :t

1 and corresponding actions at−T :t to the next obser-
vation x0t+1.

To better handle continuous action inputs within the world
model, we adopt a two-hot encoding scheme, inspired by
DreamerV3 [17]. Unlike one-hot discretization [16], latent-
space representation (e.g. VQ-VAE [30]), or token-based
approaches (e.g., FAST [31]), two-hot encoding provides a
lossless and differentiable representation without introducing
reconstruction errors. For each action dimension ai ∈ R,
given bin values B = {b1, . . . , bK}, we map ai to its two
nearest bins:

ti[k] =
bk+1 − ai
bk+1 − bk

, ti[k + 1] =
ai − bk
bk+1 − bk

, (3)

with
∑
j ti[j] = 1 and bk ≤ ai ≤ bk+1, where ti ∈

RK denotes the two-hot weight vector for the i-th action
dimension. This interpolation-based representation preserves
continuity while embedding a lightweight discrete structure.
In practice, two-hot encoding achieves fine-grained modeling
with a moderate number of bins (e.g., K = 21) and can be
optimized end-to-end with policy networks. We denote the
encoded action representation as z, and replace the original
action at−T :t with zt−T :t as conditional input to the diffusion
model.

1We denote the observation as x0 to maintain consistency with the
notation in diffusion models. For simplicity, we occasionally use x to denote
the original image observation x0.

Based on this, the diffusion transition model Dθ is for-
mally defined as a denoising process conditioned on histori-
cal observations x0t−T :t and encoded actions zt−T :t, and (2)
can be rewrote as follows:

Dθ(x
τ , x0t−T :t, zt−T :t) =c

τ
skipx

τ+

cτoutFθ(c
τ
inx

τ ; cτnoise, x
0
t−T :t, zt−T :t).

(4)
After that, we obtain the training objective:

LD(θ) = Exτ∼pτ

[∥∥∥∥Fθ(cτinxτt+1, τ, x
0
t−T :t, zt−T :t

)
− 1

cτout

(
x0
t+1 − cτskipxτt+1

)∥∥∥∥2
]
. (5)

In practice, we follow the design principles of EDM [29]
in selecting the noise schedule and hyperparameters (e.g.,
the design of cin and cout). For the network architecture, we
employ U-Net [32] 2D to model Fθ.

3) Reward Classifier: In real robotic systems, reward
functions are often difficult to handcraft. Since our exper-
iments primarily focus on sparse rewards, we introduce a
reward classifier that provides a binary signal indicating
whether the agent has reached a successful state. Given
the next observation xt+1, the classifier Cψ outputs the
probability that the next observation is a success, defined
as

r(st, at) := Cψ(xt+1). (6)

Architecturally, we employ a pre-trained ResNet18 [33]
as the visual backbone for feature extraction. The classifier
is trained on expert demonstrations {(xi, ri)}, where ri ∈
{0, 1}. Its parameters are optimized by minimizing the binary
cross-entropy loss:

LC(ψ) = −
1

N

N∑
i=1

[
ri logCψ(xi)+(1−ri) log

(
1−Cψ(xi)

)]
.

(7)



After training, the classifier is frozen and used during
reinforcement learning to provide a binary success/failure
reward signal, thereby avoiding complex reward engineering
while ensuring reliable sparse feedback.

C. Policy Optimization Stage

Algorithm 1 Algorithm of World4RL (Pre-training and
Policy Optimization)
Input:
Dθ, Cψ, πξ, Vϕ: diffusion transition model, reward classi-
fier, policy, value network
Dexp, Drollout, Dwm: expert demos, imitation/random roll-
outs, world-model rollouts buffers
Pre-training Stage

1: (Policy pre-training)
2: Sample (x0t , at) ∼ Dexp

3: Compute LBC(ξ) using Eq. (1)
4: ξ ← ξ − α∇ξLBC(ξ) ▷ update policy
5: (Diffusion transition model pre-training)
6: Sample (x0t−T :t, at−T :t, x

0
t+1) ∼ Dexp ∪ Drollout

7: zt−T :t ← TwoHot(at−T :t)
8: Sample τ ∼ U [0, T ] and construct xτt+1 by forward

noising of x0t+1

9: Compute LD(θ) using Eqs. (4) and (5)
10: θ ← θ − α∇θLD(θ) ▷ update diffusion
11: (Reward classifier pre-training)
12: Sample (x0i , yi) ∼ Dexp ▷ yi ∈ {0, 1} success label
13: Compute LC(ψ) with BCE (cf. Eq. (7))
14: ψ ← ψ − α∇ψLR(ψ) ▷ update classifier
Policy Optimization Stage

1: for epoch = 1 . . .max epochs do
2: Observe context xt−T :t

3: at ∼ πξ(· | xt); zt ← TwoHot(at)
4: x̃t+1 ← Sample from Dθ(·; xt−T :t, zt−T :t)
5: rt ← Cψ(x̃t+1) ∈ {0, 1}
6: Dwm ← Dwm ∪

(
xt, at, rt, x̃t+1

)
7: if |Dwm| ≥ ppo batch size then
8: UPDATEPPO(Dwm)
9: Dwm ← ∅

10: end if
11: end for

Our objective is to learn an agent πξ that maximizes the
expected cumulative rewards in the world model. To achieve
this, we adopt PPO [27], which separately optimizes a policy
model πξ and a value model Vϕ. The policy objective is
defined as

LP(ξ) = Et[min(ρt(ξ)At(xt, at), (8)
clip(ρt(ξ), 1− ϵ, 1 + ϵ)At(xt, at))],

where ρt(ξ) =
πξ(at|xt)
πξold (at|xt)

is the probability ratio between
the updated policy πξ and the reference (old) policy πξold that
was used to collect trajectories, At(xt, at) is the advantage
function, and ϵ is a hyperparameter controlling the clipping
range.

The value function is optimized with the regression objec-
tive:

LV (ϕ) = Et
[
(Vϕ(xt)− (rt + γVϕ(xt+1)))

2
]
. (9)

During optimization, the frozen diffusion world model
Dθ is used to generate imagined rollouts conditioned on
past observations x0t−T :t and encoded actions zt−T :t. These
synthetic trajectories serve as a substitute for real-world
interaction, greatly reducing training costs and avoiding
hardware risks. The reward classifier Cψ evaluates each
imagined next state, providing a sparse binary reward signal
R(st, at) ∈ {0, 1}.

The policy πξ interacts with the world model in the
following loop:

• Given the current observation x0t , the policy outputs
an action at, which is then discretized via two-hot
encoding into zt.

• The diffusion transition model predicts the next obser-
vation x0t+1 conditioned on x0t−T :t and zt−T :t.

• The reward classifier evaluates x0t+1 to provide a binary
success/failure reward.

• The policy and value models are updated via PPO [27]
using the generated rollouts.

This integration of PPO [27] with imagined rollouts allows
the policy to efficiently explore and improve in sparse reward
settings, while the pre-training ensure stable initialization.
Together, these design choices enable World4RL to achieve
both sample efficiency and robust performance in robotic
manipulation tasks.

IV. EXPERIMENTS

We conduct extensive experiments to evaluate the effec-
tiveness of World4RL. Our goal is to answer three key
questions: 1) Can World4RL accurately model fine-grained
robotic manipulation tasks and capture task-specific dynam-
ics? 2) Does World4RL facilitate reinforcement learning by
enabling more efficient policy training and achieving superior
performance compared with strong baselines, including imi-
tation learning, offline reinforcement learning, and planning
methods? 3) Can World4RL maintain strong performance
when deployed on real robot platforms?

To assess the capability of World4RL as a generative world
model, we adopt three widely used metrics:

• LPIPS [34]: perceptual similarity between predictions
and ground truth;

• FID [35]: distributional quality of generated images;
• FVD [36]: video-level consistency capturing both spa-

tial and temporal fidelity.
For this part, we compare against three representative

video prediction models: NWM [13], a DiT-based dynamics
world model designed for temporal sequence modeling,
iVideoGPT [37], an autoregressive transformer framework
with compressive tokenization for multimodal prediction,
and DiWA [14], a RSSM-based world model designed for
policy adaptation.



To evaluate the effectiveness of World4RL in policy learn-
ing, we adopt task success rate (SR) as the primary metric.
We conduct experiments on the Meta-World benchmark
[38], which provides a diverse suite of robotic manipulation
tasks commonly used for evaluating policy performance. We
compare World4RL against a broad spectrum of baselines, all
of which are evaluated in the fixed dataset without additional
online interaction, including

• Imitation learning: behavior cloning with gaussian pol-
icy and Diffusion Policy (DP) [39];

• Offline Reinforcement Learning: TD3+BC [40] and
IQL [41];

• Planning-based method: IRASim-ft [12].
For a fair comparison, we adopt planning method as

IRASim in our world model, which we call IRASim-ft: at
test time, multiple candidate trajectories are sampled from
the world model, their cumulative rewards

∑
r̃ are evaluated

with a learned reward model, and the first action of the
highest-reward trajectory is executed.

In addition, we compare against hybrid offline-to-online
approaches such as Uni-O4 [42] and RLPD [43], and
observe the number of online samples they require to reach
the same level of performance. This directly assesses the
sample efficiency of World4RL.

With the evaluation metrics and baselines established, we
now present three sets of experiments to assess the capability
of World4RL: modeling robotic dynamics, enhancing policy
learning, and transferring to real-world robots.

A. Can World4RL Accurately Simulate Robotic Manipula-
tion Environments?

We collect training data from six representative environ-
ments in the Meta-World benchmark. For each task, we
gather 50 expert trajectories, 150 trajectories generated by
a pre-trained gaussian policy, and 30 trajectories from a
random policy rollout. Each trajectory contains 50 timesteps.
During training, the model is conditioned on a history of four
consecutive frames along with their corresponding actions,
and is required to predict future observations. At test time,
the model receives only the initial frame and action as
input and autoregressively generates the subsequent video
sequence. This setup allows us to test not only whether the
model can predict short-term dynamics accurately, but also
whether it can maintain coherent and stable rollouts over
longer horizons through autoregressive generation.

We evaluate the fidelity of learned dynamics on Meta-
World, as summarized in Table I. World4RL consistently
achieves the lowest FVD, FID, and LPIPS scores under
both policy and random rollouts, significantly outperforming
NWM [13], iVideoGPT [37] and DiWA [14]. In particular,
DiWA exhibits notably poor quantitative results on our multi-
task datasets setting, and even its single-task variant (DiWA-
ST) still lags far behind. These results highlight the clear
advantage of diffusion-based architectures in maintaining
temporal consistency and visual fidelity.

In addition to quantitative metrics, we provide visual-
izations in Fig. 2. World4RL produces more coherent and

TABLE I: Quantitative results on video prediction. “ST”
denotes single-task training and evaluation.

Model FVD ↓ FID ↓ LPIPS ↓

Policy Random Policy Random Policy Random

WORLD4RL (Ours) 326.5 400.1 17.07 23.43 0.0192 0.0246
NWM [13] 547.4 851.9 30.49 34.88 0.0268 0.0259
iVideoGPT [37] 450.3 531.3 18.65 20.69 0.0256 0.0283
DiWA [14] 803.6 1231.0 62.93 96.47 0.0804 0.1364
DiWA (ST) 644.8 880.2 35.08 52.77 0.0523 0.0596

GT

World4RL
（Ours）

NWM

iVideoGPT

Task: coffee-pull-v2

Time Step
t = 0 t = 10 t = 20 t = 30 t = 40 t = 50

DiWA (ST)

DiWA

Task: coffee-pull-v2

Fig. 2: Visualization of predicted rollouts on the Coffee-Pull-
v2 task. The ground truth (GT) trajectory corresponds to a
failed execution, where the robot does not successfully pull
the cup. World4RL accurately models this failure trajectory,
faithfully capturing the underlying dynamics, while baseline
models (NWM [13], iVideoGPT [37], and DiWA [14])
incorrectly generate successful executions.

physically consistent rollouts, closely matching ground-truth
trajectories, while baseline models often generate blurrier
predictions or inconsistent dynamics. Notably, when given
failed execution trajectories, World4RL can still faithfully
model the underlying failure dynamics, whereas DiWA not
only suffers from blurry and inconsistent rollouts but occa-
sionally generates scenes from other tasks, underscoring its
inability to generalize to multi-task settings. Together, these
findings confirm that our diffusion world models provide
superior capacity to capture fine-grained robotic interactions
and long-horizon dynamics compared with other architec-
tures.

B. Can World4RL Enhance Policy Learning?

We next investigate whether World4RL can facilitate pol-
icy learning and outperform existing approaches. As outlined
in Sec. IV, our baselines include imitation learning, offline
RL, and planning-based methods.



For a fair evaluation under realistic conditions, although
Meta-World provides dense rewards, we instead adopt sparse
success signals, which better reflect real robotic scenar-
ios where dense reward shaping is often unavailable. For
imitation learning, the training dataset contains 50 expert
demonstrations, while offline RL methods are trained with
50 expert trajectories plus 150 rollouts collected from a BC
policy.

Table II reports the success rates across tasks. World4RL
consistently outperforms baselines. These results demon-
strate that integrating World4RL into policy training yields
more effective learning under sparse reward conditions. In
contrast, IRASim-ft, while competitive in some tasks, relies
on exhaustive trajectory sampling and reward evaluation at
test time, which incurs up to 40× higher computational cost
compared to World4RL.

To further examine sample efficiency, we also com-
pare World4RL with two representative offline-to-online
approaches, Uni-O4 [42] and RLPD [43], both of which
rely on substantial online interaction. In contrast, World4RL
is trained entirely on fixed datasets without any online
samples. As illustrated in Fig. 3, World4RL already achieves
comparable or superior performance with only expert and
policy rollout data, while RLPD and Uni-O4 require 346k
and 470k online steps, respectively, to reach the same level.
This demonstrates the strong sample efficiency of World4RL,
making it particularly suitable for real-robot deployment
where online interaction is expensive and limited.

Fig. 3: Comparison of online sample efficiency. World4RL
achieves comparable performance on fixed datasets, whereas
RLPD and Uni-O4 require over additional 300k online steps.

C. Can World4RL Transfer to Real-World Robots well?

We evaluate World4RL on six real-world manipulation
tasks using a Franka Emika Panda robot, shown in Fig. 4.
Following the HIL-SERL [44] protocol, we collected data
via teleoperation with a space mouse. For each task, the
training dataset comprised 50 human expert demonstrations,
50 trajectories generated by a pre-trained gaussian policy,
and 50 trajectories from a random policy. Following the
methodology in Sec. III, World4RL first pre-trains the policy
and the diffusion world model, and then optimizes the policy

Open Drawer Close Drawer

Pick Bread In Pick Bread Out

Pick Apple Press Button

Fig. 4: Real World Tasks

with imagined rollouts, without requiring any additional real-
world interaction.

During evaluation, the initial scene configuration and robot
starting pose are fixed for each task, and we execute 20
rollouts in the physical environment to measure success
rates. We compare World4RL against the initial pre-trained
gaussian policy and diffusion policy to assess whether our
framework can deliver consistent improvements in real-world
policy performance.

Table III reports the success rates across six real-world
tasks. World4RL achieves the highest average success rate of
93.3%, significantly outperforming imitation learning meth-
ods. Beyond achieving higher success rates, we also observe
that policies fine-tuned with World4RL tend to execute
tasks more decisively, completing pick-and-place behaviors
quickly and accurately; for example, in the put bread in
task, the fine-tuned policy promptly performs the grasping
and placing actions, whereas gaussian policy and diffusion
policy [39] often show hesitation or linger in intermediate
states without committing to task completion.

V. ABLATION STUDY

To better understand the design choices in World4RL,
we conduct ablation experiments focusing on the action
encoding strategy of the world model. Our goal is to assess
how different encoding mechanisms influence the fidelity of
learned dynamics and their impact on downstream policy
optimization.

Accurate action encoding is not only critical for world
model learning, but also serves as the essential bridge that
connects the world model with the RL agent. Many prior
works simply adopt a linear MLP [12], [13] to parameterize
actions. While effective in domains such as autonomous



TABLE II: Success rate of different methods on Meta-World benchmark over 3 seeds. The notation ↑ n indicates the absolute
improvement over pre-trained gaussian policy.

Task Imitation Learning Offline Reinforcement Learning World Model based Methods

Gaussian Policy DP [39] TD3+BC [40] IQL [41] IRASim-ft [12] WORLD4RL (Ours)

coffee-pull-v2 47 ± 7 34 ± 7 57 ± 13 47 ± 9 55 ± 6 68 ± 5 ↑ 21
soccer-v2 18 ± 2 19 ± 4 22 ± 8 14 ± 7 28 ± 5 31 ± 4 ↑ 13
hammer-v2 79 ± 5 15 ± 6 89 ± 4 73 ± 10 82 ± 5 91 ± 4 ↑ 12
door-lock-v2 74 ± 5 86 ± 8 82 ± 6 69 ± 11 78 ± 5 92 ± 5 ↑ 14
lever-pull-v2 31 ± 5 49 ± 5 39 ± 11 24 ± 3 33 ± 5 52 ± 8 ↑ 21
handle-pull-v2 60 ± 6 67 ± 11 57 ± 6 25 ± 6 66 ± 6 71 ± 4 ↑ 11

Average SR 51.5 45.0 57.7 42.0 57.0 67.5 ↑ 16

TABLE III: Real-world success rates across 6 manipulation
tasks (20 trials per task).

Task Gaussian Policy DP [39] WORLD4RL (Ours)

Pick bread out 13/20 19/20 20/20
Pick apple 8/20 15/20 19/20
Press button 12/20 16/20 18/20
Put bread in 12/20 18/20 16/20
Open drawer 12/20 18/20 19/20
Close drawer 15/20 20/20 20/20

Average SR 68.3% 88.3% 93.3% ↑ 25

driving, we find it insufficient for robotic manipulation,
where actions often carry more complex semantics.

Beyond simple function approximation, action representa-
tion in robotics has been studied through alternative strate-
gies, including discretization (e.g. dividing into bins, also
called as ont-hot encoding [16]), latent-space embeddings
(e.g. VAE [45]), and tokenization (e.g. FAST toekenizer
[31]). While these methods aim to introduce more structured
action representations, they inevitably suffer from lossy
reconstruction during encoding and decoding, which degrade
the predictive fidelity of world models and hinder down-
stream reinforcement learning, particularly in fine-grained
robotic manipulation tasks.

We systematically evaluate different action encoding
strategies in our framework, including linear projection, one-
hot, VQ-VAE [30] and FAST, on the same dataset as in
Sec. IV-A. As shown in Table IV, our proposed two-hot
encoding consistently outperforms other approaches. These
results highlight the critical role of action encoding in
world model learning. Beyond performance gaps, approaches
such as binning, FAST, and VQ-VAE introduce lossy action
reconstruction, which not only limits model fidelity but also
undermines downstream reinforcement learning by introduc-
ing unstable policy gradients. In contrast, the two-hot scheme
provides a lossless and differentiable representation, enabling
both robust world modeling and stable RL training.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed World4RL, a framework that
systematically incorporates diffusion models into reinforce-
ment learning for robotic manipulation. Experimental results
demonstrate that World4RL not only serves as a high-fidelity
world model capable of accurately modeling trajectories,

TABLE IV: Comparison of different action encoding strate-
gies on Meta-World video prediction.

Model FVD ↓ FID ↓ LPIPS ↓

Policy Random Policy Random Policy Random

Two-hot (Ours) 326.5 400.1 17.07 23.43 0.0192 0.0246
One-hot [16] 350.3 471.5 18.52 26.24 0.0193 0.0257
Linear [13] 353.4 514.0 17.85 23.83 0.0218 0.0250
FAST [31] 407.0 748.0 28.92 36.52 0.0284 0.0409
VQ-VAE [30] 525.6 860.0 28.60 43.25 0.0506 0.0633

but also functions as a real-time simulator that that enables
efficient policy refinement under sparse reward conditions.
These findings highlight the potential of diffusion models as
a unifying bridge between visual prediction and reinforce-
ment learning, facilitating consistent improvement of pre-
trained policies beyond imitation learning.

Although diffusion world models can effectively capture
environment dynamics, their modeling capacity is ultimately
constrained by the action distribution present in limited
offline datasets. During reinforcement learning, the policy
may explore actions that fall outside this distribution, re-
sulting in inaccurate rollouts from the world model and
thereby restricting policy improvement. A feasible avenue
for future work is to incorporate a small amount of real-
world interaction data to update the world model, which
could in turn enhance its fidelity and enable further policy
refinement. In addition, our current design relies on sparse
binary rewards to reflect real-world constraints, but this
often results in inefficient exploration and potential out-
of-distribution behaviors. Introducing denser reward signals
could mitigate such issues and promote more stable and
effective policy optimization.
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